Linux unitednationsplay.com 3.10.0-1160.45.1.el7.x86_64 #1 SMP Wed Oct 13 17:20:51 UTC 2021 x86_64
nginx/1.20.1
Server IP : 188.130.139.92 & Your IP : 3.135.201.190
Domains :
Cant Read [ /etc/named.conf ]
User : web
Terminal
Auto Root
Create File
Create Folder
Localroot Suggester
Backdoor Destroyer
Readme
/
usr /
lib /
python2.7 /
site-packages /
gyp /
generator /
Delete
Unzip
Name
Size
Permission
Date
Action
__init__.py
0
B
-rw-r--r--
2013-02-12 09:57
__init__.pyc
145
B
-rw-r--r--
2014-03-07 02:31
__init__.pyo
145
B
-rw-r--r--
2014-03-07 02:31
android.py
43.02
KB
-rw-r--r--
2013-02-12 09:57
android.pyc
31.03
KB
-rw-r--r--
2014-03-07 02:31
android.pyo
30.29
KB
-rw-r--r--
2014-03-07 02:31
dump_dependency_json.py
3.34
KB
-rw-r--r--
2013-02-12 09:57
dump_dependency_json.pyc
3.02
KB
-rw-r--r--
2014-03-07 02:31
dump_dependency_json.pyo
3.02
KB
-rw-r--r--
2014-03-07 02:31
eclipse.py
10.25
KB
-rw-r--r--
2013-04-23 10:06
eclipse.pyc
8.84
KB
-rw-r--r--
2014-03-07 02:31
eclipse.pyo
8.84
KB
-rw-r--r--
2014-03-07 02:31
gypd.py
3.25
KB
-rw-r--r--
2013-02-12 09:57
gypd.pyc
2.86
KB
-rw-r--r--
2014-03-07 02:31
gypd.pyo
2.86
KB
-rw-r--r--
2014-03-07 02:31
gypsh.py
1.63
KB
-rw-r--r--
2013-02-12 09:57
gypsh.pyc
1.45
KB
-rw-r--r--
2014-03-07 02:31
gypsh.pyo
1.45
KB
-rw-r--r--
2014-03-07 02:31
make.py
86.51
KB
-rw-r--r--
2014-03-07 02:31
make.pyc
64.25
KB
-rw-r--r--
2014-03-07 02:31
make.pyo
63.16
KB
-rw-r--r--
2014-03-07 02:31
msvs.py
114.22
KB
-rw-r--r--
2013-04-23 10:06
msvs.pyc
85.76
KB
-rw-r--r--
2014-03-07 02:31
msvs.pyo
85.73
KB
-rw-r--r--
2014-03-07 02:31
msvs_test.py
996
B
-rw-r--r--
2013-02-12 09:57
msvs_test.pyc
1.31
KB
-rw-r--r--
2014-03-07 02:31
msvs_test.pyo
1.31
KB
-rw-r--r--
2014-03-07 02:31
ninja.py
73.61
KB
-rw-r--r--
2013-04-23 10:06
ninja.pyc
49.38
KB
-rw-r--r--
2014-03-07 02:31
ninja.pyo
48.85
KB
-rw-r--r--
2014-03-07 02:31
ninja_test.py
1.61
KB
-rw-r--r--
2013-02-12 09:57
ninja_test.pyc
1.86
KB
-rw-r--r--
2014-03-07 02:31
ninja_test.pyo
1.86
KB
-rw-r--r--
2014-03-07 02:31
xcode.py
53.53
KB
-rw-r--r--
2013-02-12 09:57
xcode.pyc
23.03
KB
-rw-r--r--
2014-03-07 02:31
xcode.pyo
22.83
KB
-rw-r--r--
2014-03-07 02:31
Save
Rename
# Copyright (c) 2012 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import filecmp import gyp.common import gyp.xcodeproj_file import errno import os import sys import posixpath import re import shutil import subprocess import tempfile # Project files generated by this module will use _intermediate_var as a # custom Xcode setting whose value is a DerivedSources-like directory that's # project-specific and configuration-specific. The normal choice, # DERIVED_FILE_DIR, is target-specific, which is thought to be too restrictive # as it is likely that multiple targets within a single project file will want # to access the same set of generated files. The other option, # PROJECT_DERIVED_FILE_DIR, is unsuitable because while it is project-specific, # it is not configuration-specific. INTERMEDIATE_DIR is defined as # $(PROJECT_DERIVED_FILE_DIR)/$(CONFIGURATION). _intermediate_var = 'INTERMEDIATE_DIR' # SHARED_INTERMEDIATE_DIR is the same, except that it is shared among all # targets that share the same BUILT_PRODUCTS_DIR. _shared_intermediate_var = 'SHARED_INTERMEDIATE_DIR' _library_search_paths_var = 'LIBRARY_SEARCH_PATHS' generator_default_variables = { 'EXECUTABLE_PREFIX': '', 'EXECUTABLE_SUFFIX': '', 'STATIC_LIB_PREFIX': 'lib', 'SHARED_LIB_PREFIX': 'lib', 'STATIC_LIB_SUFFIX': '.a', 'SHARED_LIB_SUFFIX': '.dylib', # INTERMEDIATE_DIR is a place for targets to build up intermediate products. # It is specific to each build environment. It is only guaranteed to exist # and be constant within the context of a project, corresponding to a single # input file. Some build environments may allow their intermediate directory # to be shared on a wider scale, but this is not guaranteed. 'INTERMEDIATE_DIR': '$(%s)' % _intermediate_var, 'OS': 'mac', 'PRODUCT_DIR': '$(BUILT_PRODUCTS_DIR)', 'LIB_DIR': '$(BUILT_PRODUCTS_DIR)', 'RULE_INPUT_ROOT': '$(INPUT_FILE_BASE)', 'RULE_INPUT_EXT': '$(INPUT_FILE_SUFFIX)', 'RULE_INPUT_NAME': '$(INPUT_FILE_NAME)', 'RULE_INPUT_PATH': '$(INPUT_FILE_PATH)', 'RULE_INPUT_DIRNAME': '$(INPUT_FILE_DIRNAME)', 'SHARED_INTERMEDIATE_DIR': '$(%s)' % _shared_intermediate_var, 'CONFIGURATION_NAME': '$(CONFIGURATION)', } # The Xcode-specific sections that hold paths. generator_additional_path_sections = [ 'mac_bundle_resources', 'mac_framework_headers', 'mac_framework_private_headers', # 'mac_framework_dirs', input already handles _dirs endings. ] # The Xcode-specific keys that exist on targets and aren't moved down to # configurations. generator_additional_non_configuration_keys = [ 'mac_bundle', 'mac_bundle_resources', 'mac_framework_headers', 'mac_framework_private_headers', 'xcode_create_dependents_test_runner', ] # We want to let any rules apply to files that are resources also. generator_extra_sources_for_rules = [ 'mac_bundle_resources', 'mac_framework_headers', 'mac_framework_private_headers', ] # Xcode's standard set of library directories, which don't need to be duplicated # in LIBRARY_SEARCH_PATHS. This list is not exhaustive, but that's okay. xcode_standard_library_dirs = frozenset([ '$(SDKROOT)/usr/lib', '$(SDKROOT)/usr/local/lib', ]) def CreateXCConfigurationList(configuration_names): xccl = gyp.xcodeproj_file.XCConfigurationList({'buildConfigurations': []}) if len(configuration_names) == 0: configuration_names = ['Default'] for configuration_name in configuration_names: xcbc = gyp.xcodeproj_file.XCBuildConfiguration({ 'name': configuration_name}) xccl.AppendProperty('buildConfigurations', xcbc) xccl.SetProperty('defaultConfigurationName', configuration_names[0]) return xccl class XcodeProject(object): def __init__(self, gyp_path, path, build_file_dict): self.gyp_path = gyp_path self.path = path self.project = gyp.xcodeproj_file.PBXProject(path=path) projectDirPath = gyp.common.RelativePath( os.path.dirname(os.path.abspath(self.gyp_path)), os.path.dirname(path) or '.') self.project.SetProperty('projectDirPath', projectDirPath) self.project_file = \ gyp.xcodeproj_file.XCProjectFile({'rootObject': self.project}) self.build_file_dict = build_file_dict # TODO(mark): add destructor that cleans up self.path if created_dir is # True and things didn't complete successfully. Or do something even # better with "try"? self.created_dir = False try: os.makedirs(self.path) self.created_dir = True except OSError, e: if e.errno != errno.EEXIST: raise def Finalize1(self, xcode_targets, serialize_all_tests): # Collect a list of all of the build configuration names used by the # various targets in the file. It is very heavily advised to keep each # target in an entire project (even across multiple project files) using # the same set of configuration names. configurations = [] for xct in self.project.GetProperty('targets'): xccl = xct.GetProperty('buildConfigurationList') xcbcs = xccl.GetProperty('buildConfigurations') for xcbc in xcbcs: name = xcbc.GetProperty('name') if name not in configurations: configurations.append(name) # Replace the XCConfigurationList attached to the PBXProject object with # a new one specifying all of the configuration names used by the various # targets. try: xccl = CreateXCConfigurationList(configurations) self.project.SetProperty('buildConfigurationList', xccl) except: sys.stderr.write("Problem with gyp file %s\n" % self.gyp_path) raise # The need for this setting is explained above where _intermediate_var is # defined. The comments below about wanting to avoid project-wide build # settings apply here too, but this needs to be set on a project-wide basis # so that files relative to the _intermediate_var setting can be displayed # properly in the Xcode UI. # # Note that for configuration-relative files such as anything relative to # _intermediate_var, for the purposes of UI tree view display, Xcode will # only resolve the configuration name once, when the project file is # opened. If the active build configuration is changed, the project file # must be closed and reopened if it is desired for the tree view to update. # This is filed as Apple radar 6588391. xccl.SetBuildSetting(_intermediate_var, '$(PROJECT_DERIVED_FILE_DIR)/$(CONFIGURATION)') xccl.SetBuildSetting(_shared_intermediate_var, '$(SYMROOT)/DerivedSources/$(CONFIGURATION)') # Set user-specified project-wide build settings and config files. This # is intended to be used very sparingly. Really, almost everything should # go into target-specific build settings sections. The project-wide # settings are only intended to be used in cases where Xcode attempts to # resolve variable references in a project context as opposed to a target # context, such as when resolving sourceTree references while building up # the tree tree view for UI display. # Any values set globally are applied to all configurations, then any # per-configuration values are applied. for xck, xcv in self.build_file_dict.get('xcode_settings', {}).iteritems(): xccl.SetBuildSetting(xck, xcv) if 'xcode_config_file' in self.build_file_dict: config_ref = self.project.AddOrGetFileInRootGroup( self.build_file_dict['xcode_config_file']) xccl.SetBaseConfiguration(config_ref) build_file_configurations = self.build_file_dict.get('configurations', {}) if build_file_configurations: for config_name in configurations: build_file_configuration_named = \ build_file_configurations.get(config_name, {}) if build_file_configuration_named: xcc = xccl.ConfigurationNamed(config_name) for xck, xcv in build_file_configuration_named.get('xcode_settings', {}).iteritems(): xcc.SetBuildSetting(xck, xcv) if 'xcode_config_file' in build_file_configuration_named: config_ref = self.project.AddOrGetFileInRootGroup( build_file_configurations[config_name]['xcode_config_file']) xcc.SetBaseConfiguration(config_ref) # Sort the targets based on how they appeared in the input. # TODO(mark): Like a lot of other things here, this assumes internal # knowledge of PBXProject - in this case, of its "targets" property. # ordinary_targets are ordinary targets that are already in the project # file. run_test_targets are the targets that run unittests and should be # used for the Run All Tests target. support_targets are the action/rule # targets used by GYP file targets, just kept for the assert check. ordinary_targets = [] run_test_targets = [] support_targets = [] # targets is full list of targets in the project. targets = [] # does the it define it's own "all"? has_custom_all = False # targets_for_all is the list of ordinary_targets that should be listed # in this project's "All" target. It includes each non_runtest_target # that does not have suppress_wildcard set. targets_for_all = [] for target in self.build_file_dict['targets']: target_name = target['target_name'] toolset = target['toolset'] qualified_target = gyp.common.QualifiedTarget(self.gyp_path, target_name, toolset) xcode_target = xcode_targets[qualified_target] # Make sure that the target being added to the sorted list is already in # the unsorted list. assert xcode_target in self.project._properties['targets'] targets.append(xcode_target) ordinary_targets.append(xcode_target) if xcode_target.support_target: support_targets.append(xcode_target.support_target) targets.append(xcode_target.support_target) if not int(target.get('suppress_wildcard', False)): targets_for_all.append(xcode_target) if target_name.lower() == 'all': has_custom_all = True; # If this target has a 'run_as' attribute, add its target to the # targets, and add it to the test targets. if target.get('run_as'): # Make a target to run something. It should have one # dependency, the parent xcode target. xccl = CreateXCConfigurationList(configurations) run_target = gyp.xcodeproj_file.PBXAggregateTarget({ 'name': 'Run ' + target_name, 'productName': xcode_target.GetProperty('productName'), 'buildConfigurationList': xccl, }, parent=self.project) run_target.AddDependency(xcode_target) command = target['run_as'] script = '' if command.get('working_directory'): script = script + 'cd "%s"\n' % \ gyp.xcodeproj_file.ConvertVariablesToShellSyntax( command.get('working_directory')) if command.get('environment'): script = script + "\n".join( ['export %s="%s"' % (key, gyp.xcodeproj_file.ConvertVariablesToShellSyntax(val)) for (key, val) in command.get('environment').iteritems()]) + "\n" # Some test end up using sockets, files on disk, etc. and can get # confused if more then one test runs at a time. The generator # flag 'xcode_serialize_all_test_runs' controls the forcing of all # tests serially. It defaults to True. To get serial runs this # little bit of python does the same as the linux flock utility to # make sure only one runs at a time. command_prefix = '' if serialize_all_tests: command_prefix = \ """python -c "import fcntl, subprocess, sys file = open('$TMPDIR/GYP_serialize_test_runs', 'a') fcntl.flock(file.fileno(), fcntl.LOCK_EX) sys.exit(subprocess.call(sys.argv[1:]))" """ # If we were unable to exec for some reason, we want to exit # with an error, and fixup variable references to be shell # syntax instead of xcode syntax. script = script + 'exec ' + command_prefix + '%s\nexit 1\n' % \ gyp.xcodeproj_file.ConvertVariablesToShellSyntax( gyp.common.EncodePOSIXShellList(command.get('action'))) ssbp = gyp.xcodeproj_file.PBXShellScriptBuildPhase({ 'shellScript': script, 'showEnvVarsInLog': 0, }) run_target.AppendProperty('buildPhases', ssbp) # Add the run target to the project file. targets.append(run_target) run_test_targets.append(run_target) xcode_target.test_runner = run_target # Make sure that the list of targets being replaced is the same length as # the one replacing it, but allow for the added test runner targets. assert len(self.project._properties['targets']) == \ len(ordinary_targets) + len(support_targets) self.project._properties['targets'] = targets # Get rid of unnecessary levels of depth in groups like the Source group. self.project.RootGroupsTakeOverOnlyChildren(True) # Sort the groups nicely. Do this after sorting the targets, because the # Products group is sorted based on the order of the targets. self.project.SortGroups() # Create an "All" target if there's more than one target in this project # file and the project didn't define its own "All" target. Put a generated # "All" target first so that people opening up the project for the first # time will build everything by default. if len(targets_for_all) > 1 and not has_custom_all: xccl = CreateXCConfigurationList(configurations) all_target = gyp.xcodeproj_file.PBXAggregateTarget( { 'buildConfigurationList': xccl, 'name': 'All', }, parent=self.project) for target in targets_for_all: all_target.AddDependency(target) # TODO(mark): This is evil because it relies on internal knowledge of # PBXProject._properties. It's important to get the "All" target first, # though. self.project._properties['targets'].insert(0, all_target) # The same, but for run_test_targets. if len(run_test_targets) > 1: xccl = CreateXCConfigurationList(configurations) run_all_tests_target = gyp.xcodeproj_file.PBXAggregateTarget( { 'buildConfigurationList': xccl, 'name': 'Run All Tests', }, parent=self.project) for run_test_target in run_test_targets: run_all_tests_target.AddDependency(run_test_target) # Insert after the "All" target, which must exist if there is more than # one run_test_target. self.project._properties['targets'].insert(1, run_all_tests_target) def Finalize2(self, xcode_targets, xcode_target_to_target_dict): # Finalize2 needs to happen in a separate step because the process of # updating references to other projects depends on the ordering of targets # within remote project files. Finalize1 is responsible for sorting duty, # and once all project files are sorted, Finalize2 can come in and update # these references. # To support making a "test runner" target that will run all the tests # that are direct dependents of any given target, we look for # xcode_create_dependents_test_runner being set on an Aggregate target, # and generate a second target that will run the tests runners found under # the marked target. for bf_tgt in self.build_file_dict['targets']: if int(bf_tgt.get('xcode_create_dependents_test_runner', 0)): tgt_name = bf_tgt['target_name'] toolset = bf_tgt['toolset'] qualified_target = gyp.common.QualifiedTarget(self.gyp_path, tgt_name, toolset) xcode_target = xcode_targets[qualified_target] if isinstance(xcode_target, gyp.xcodeproj_file.PBXAggregateTarget): # Collect all the run test targets. all_run_tests = [] pbxtds = xcode_target.GetProperty('dependencies') for pbxtd in pbxtds: pbxcip = pbxtd.GetProperty('targetProxy') dependency_xct = pbxcip.GetProperty('remoteGlobalIDString') if hasattr(dependency_xct, 'test_runner'): all_run_tests.append(dependency_xct.test_runner) # Directly depend on all the runners as they depend on the target # that builds them. if len(all_run_tests) > 0: run_all_target = gyp.xcodeproj_file.PBXAggregateTarget({ 'name': 'Run %s Tests' % tgt_name, 'productName': tgt_name, }, parent=self.project) for run_test_target in all_run_tests: run_all_target.AddDependency(run_test_target) # Insert the test runner after the related target. idx = self.project._properties['targets'].index(xcode_target) self.project._properties['targets'].insert(idx + 1, run_all_target) # Update all references to other projects, to make sure that the lists of # remote products are complete. Otherwise, Xcode will fill them in when # it opens the project file, which will result in unnecessary diffs. # TODO(mark): This is evil because it relies on internal knowledge of # PBXProject._other_pbxprojects. for other_pbxproject in self.project._other_pbxprojects.keys(): self.project.AddOrGetProjectReference(other_pbxproject) self.project.SortRemoteProductReferences() # Give everything an ID. self.project_file.ComputeIDs() # Make sure that no two objects in the project file have the same ID. If # multiple objects wind up with the same ID, upon loading the file, Xcode # will only recognize one object (the last one in the file?) and the # results are unpredictable. self.project_file.EnsureNoIDCollisions() def Write(self): # Write the project file to a temporary location first. Xcode watches for # changes to the project file and presents a UI sheet offering to reload # the project when it does change. However, in some cases, especially when # multiple projects are open or when Xcode is busy, things don't work so # seamlessly. Sometimes, Xcode is able to detect that a project file has # changed but can't unload it because something else is referencing it. # To mitigate this problem, and to avoid even having Xcode present the UI # sheet when an open project is rewritten for inconsequential changes, the # project file is written to a temporary file in the xcodeproj directory # first. The new temporary file is then compared to the existing project # file, if any. If they differ, the new file replaces the old; otherwise, # the new project file is simply deleted. Xcode properly detects a file # being renamed over an open project file as a change and so it remains # able to present the "project file changed" sheet under this system. # Writing to a temporary file first also avoids the possible problem of # Xcode rereading an incomplete project file. (output_fd, new_pbxproj_path) = \ tempfile.mkstemp(suffix='.tmp', prefix='project.pbxproj.gyp.', dir=self.path) try: output_file = os.fdopen(output_fd, 'wb') self.project_file.Print(output_file) output_file.close() pbxproj_path = os.path.join(self.path, 'project.pbxproj') same = False try: same = filecmp.cmp(pbxproj_path, new_pbxproj_path, False) except OSError, e: if e.errno != errno.ENOENT: raise if same: # The new file is identical to the old one, just get rid of the new # one. os.unlink(new_pbxproj_path) else: # The new file is different from the old one, or there is no old one. # Rename the new file to the permanent name. # # tempfile.mkstemp uses an overly restrictive mode, resulting in a # file that can only be read by the owner, regardless of the umask. # There's no reason to not respect the umask here, which means that # an extra hoop is required to fetch it and reset the new file's mode. # # No way to get the umask without setting a new one? Set a safe one # and then set it back to the old value. umask = os.umask(077) os.umask(umask) os.chmod(new_pbxproj_path, 0666 & ~umask) os.rename(new_pbxproj_path, pbxproj_path) except Exception: # Don't leave turds behind. In fact, if this code was responsible for # creating the xcodeproj directory, get rid of that too. os.unlink(new_pbxproj_path) if self.created_dir: shutil.rmtree(self.path, True) raise cached_xcode_version = None def InstalledXcodeVersion(): """Fetches the installed version of Xcode, returns empty string if it is unable to figure it out.""" global cached_xcode_version if not cached_xcode_version is None: return cached_xcode_version # Default to an empty string cached_xcode_version = '' # Collect the xcodebuild's version information. try: import subprocess cmd = ['/usr/bin/xcodebuild', '-version'] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE) xcodebuild_version_info = proc.communicate()[0] # Any error, return empty string if proc.returncode: xcodebuild_version_info = '' except OSError: # We failed to launch the tool xcodebuild_version_info = '' # Pull out the Xcode version itself. match_line = re.search('^Xcode (.*)$', xcodebuild_version_info, re.MULTILINE) if match_line: cached_xcode_version = match_line.group(1) # Done! return cached_xcode_version def AddSourceToTarget(source, type, pbxp, xct): # TODO(mark): Perhaps source_extensions and library_extensions can be made a # little bit fancier. source_extensions = ['c', 'cc', 'cpp', 'cxx', 'm', 'mm', 's'] # .o is conceptually more of a "source" than a "library," but Xcode thinks # of "sources" as things to compile and "libraries" (or "frameworks") as # things to link with. Adding an object file to an Xcode target's frameworks # phase works properly. library_extensions = ['a', 'dylib', 'framework', 'o'] basename = posixpath.basename(source) (root, ext) = posixpath.splitext(basename) if ext: ext = ext[1:].lower() if ext in source_extensions and type != 'none': xct.SourcesPhase().AddFile(source) elif ext in library_extensions and type != 'none': xct.FrameworksPhase().AddFile(source) else: # Files that aren't added to a sources or frameworks build phase can still # go into the project file, just not as part of a build phase. pbxp.AddOrGetFileInRootGroup(source) def AddResourceToTarget(resource, pbxp, xct): # TODO(mark): Combine with AddSourceToTarget above? Or just inline this call # where it's used. xct.ResourcesPhase().AddFile(resource) def AddHeaderToTarget(header, pbxp, xct, is_public): # TODO(mark): Combine with AddSourceToTarget above? Or just inline this call # where it's used. settings = '{ATTRIBUTES = (%s, ); }' % ('Private', 'Public')[is_public] xct.HeadersPhase().AddFile(header, settings) _xcode_variable_re = re.compile('(\$\((.*?)\))') def ExpandXcodeVariables(string, expansions): """Expands Xcode-style $(VARIABLES) in string per the expansions dict. In some rare cases, it is appropriate to expand Xcode variables when a project file is generated. For any substring $(VAR) in string, if VAR is a key in the expansions dict, $(VAR) will be replaced with expansions[VAR]. Any $(VAR) substring in string for which VAR is not a key in the expansions dict will remain in the returned string. """ matches = _xcode_variable_re.findall(string) if matches == None: return string matches.reverse() for match in matches: (to_replace, variable) = match if not variable in expansions: continue replacement = expansions[variable] string = re.sub(re.escape(to_replace), replacement, string) return string def EscapeXCodeArgument(s): """We must escape the arguments that we give to XCode so that it knows not to split on spaces and to respect backslash and quote literals.""" s = s.replace('\\', '\\\\') s = s.replace('"', '\\"') return '"' + s + '"' def PerformBuild(data, configurations, params): options = params['options'] for build_file, build_file_dict in data.iteritems(): (build_file_root, build_file_ext) = os.path.splitext(build_file) if build_file_ext != '.gyp': continue xcodeproj_path = build_file_root + options.suffix + '.xcodeproj' if options.generator_output: xcodeproj_path = os.path.join(options.generator_output, xcodeproj_path) for config in configurations: arguments = ['xcodebuild', '-project', xcodeproj_path] arguments += ['-configuration', config] print "Building [%s]: %s" % (config, arguments) subprocess.check_call(arguments) def GenerateOutput(target_list, target_dicts, data, params): options = params['options'] generator_flags = params.get('generator_flags', {}) parallel_builds = generator_flags.get('xcode_parallel_builds', True) serialize_all_tests = \ generator_flags.get('xcode_serialize_all_test_runs', True) project_version = generator_flags.get('xcode_project_version', None) skip_excluded_files = \ not generator_flags.get('xcode_list_excluded_files', True) xcode_projects = {} for build_file, build_file_dict in data.iteritems(): (build_file_root, build_file_ext) = os.path.splitext(build_file) if build_file_ext != '.gyp': continue xcodeproj_path = build_file_root + options.suffix + '.xcodeproj' if options.generator_output: xcodeproj_path = os.path.join(options.generator_output, xcodeproj_path) xcp = XcodeProject(build_file, xcodeproj_path, build_file_dict) xcode_projects[build_file] = xcp pbxp = xcp.project if parallel_builds: pbxp.SetProperty('attributes', {'BuildIndependentTargetsInParallel': 'YES'}) if project_version: xcp.project_file.SetXcodeVersion(project_version) # Add gyp/gypi files to project if not generator_flags.get('standalone'): main_group = pbxp.GetProperty('mainGroup') build_group = gyp.xcodeproj_file.PBXGroup({'name': 'Build'}) main_group.AppendChild(build_group) for included_file in build_file_dict['included_files']: build_group.AddOrGetFileByPath(included_file, False) xcode_targets = {} xcode_target_to_target_dict = {} for qualified_target in target_list: [build_file, target_name, toolset] = \ gyp.common.ParseQualifiedTarget(qualified_target) spec = target_dicts[qualified_target] if spec['toolset'] != 'target': raise Exception( 'Multiple toolsets not supported in xcode build (target %s)' % qualified_target) configuration_names = [spec['default_configuration']] for configuration_name in sorted(spec['configurations'].keys()): if configuration_name not in configuration_names: configuration_names.append(configuration_name) xcp = xcode_projects[build_file] pbxp = xcp.project # Set up the configurations for the target according to the list of names # supplied. xccl = CreateXCConfigurationList(configuration_names) # Create an XCTarget subclass object for the target. The type with # "+bundle" appended will be used if the target has "mac_bundle" set. # loadable_modules not in a mac_bundle are mapped to # com.googlecode.gyp.xcode.bundle, a pseudo-type that xcode.py interprets # to create a single-file mh_bundle. _types = { 'executable': 'com.apple.product-type.tool', 'loadable_module': 'com.googlecode.gyp.xcode.bundle', 'shared_library': 'com.apple.product-type.library.dynamic', 'static_library': 'com.apple.product-type.library.static', 'executable+bundle': 'com.apple.product-type.application', 'loadable_module+bundle': 'com.apple.product-type.bundle', 'shared_library+bundle': 'com.apple.product-type.framework', } target_properties = { 'buildConfigurationList': xccl, 'name': target_name, } type = spec['type'] is_bundle = int(spec.get('mac_bundle', 0)) if type != 'none': type_bundle_key = type if is_bundle: type_bundle_key += '+bundle' xctarget_type = gyp.xcodeproj_file.PBXNativeTarget try: target_properties['productType'] = _types[type_bundle_key] except KeyError, e: gyp.common.ExceptionAppend(e, "-- unknown product type while " "writing target %s" % target_name) raise else: xctarget_type = gyp.xcodeproj_file.PBXAggregateTarget assert not is_bundle, ( 'mac_bundle targets cannot have type none (target "%s")' % target_name) target_product_name = spec.get('product_name') if target_product_name is not None: target_properties['productName'] = target_product_name xct = xctarget_type(target_properties, parent=pbxp, force_outdir=spec.get('product_dir'), force_prefix=spec.get('product_prefix'), force_extension=spec.get('product_extension')) pbxp.AppendProperty('targets', xct) xcode_targets[qualified_target] = xct xcode_target_to_target_dict[xct] = spec spec_actions = spec.get('actions', []) spec_rules = spec.get('rules', []) # Xcode has some "issues" with checking dependencies for the "Compile # sources" step with any source files/headers generated by actions/rules. # To work around this, if a target is building anything directly (not # type "none"), then a second target is used to run the GYP actions/rules # and is made a dependency of this target. This way the work is done # before the dependency checks for what should be recompiled. support_xct = None if type != 'none' and (spec_actions or spec_rules): support_xccl = CreateXCConfigurationList(configuration_names); support_target_properties = { 'buildConfigurationList': support_xccl, 'name': target_name + ' Support', } if target_product_name: support_target_properties['productName'] = \ target_product_name + ' Support' support_xct = \ gyp.xcodeproj_file.PBXAggregateTarget(support_target_properties, parent=pbxp) pbxp.AppendProperty('targets', support_xct) xct.AddDependency(support_xct) # Hang the support target off the main target so it can be tested/found # by the generator during Finalize. xct.support_target = support_xct prebuild_index = 0 # Add custom shell script phases for "actions" sections. for action in spec_actions: # There's no need to write anything into the script to ensure that the # output directories already exist, because Xcode will look at the # declared outputs and automatically ensure that they exist for us. # Do we have a message to print when this action runs? message = action.get('message') if message: message = 'echo note: ' + gyp.common.EncodePOSIXShellArgument(message) else: message = '' # Turn the list into a string that can be passed to a shell. action_string = gyp.common.EncodePOSIXShellList(action['action']) # Convert Xcode-type variable references to sh-compatible environment # variable references. message_sh = gyp.xcodeproj_file.ConvertVariablesToShellSyntax(message) action_string_sh = gyp.xcodeproj_file.ConvertVariablesToShellSyntax( action_string) script = '' # Include the optional message if message_sh: script += message_sh + '\n' # Be sure the script runs in exec, and that if exec fails, the script # exits signalling an error. script += 'exec ' + action_string_sh + '\nexit 1\n' ssbp = gyp.xcodeproj_file.PBXShellScriptBuildPhase({ 'inputPaths': action['inputs'], 'name': 'Action "' + action['action_name'] + '"', 'outputPaths': action['outputs'], 'shellScript': script, 'showEnvVarsInLog': 0, }) if support_xct: support_xct.AppendProperty('buildPhases', ssbp) else: # TODO(mark): this assumes too much knowledge of the internals of # xcodeproj_file; some of these smarts should move into xcodeproj_file # itself. xct._properties['buildPhases'].insert(prebuild_index, ssbp) prebuild_index = prebuild_index + 1 # TODO(mark): Should verify that at most one of these is specified. if int(action.get('process_outputs_as_sources', False)): for output in action['outputs']: AddSourceToTarget(output, type, pbxp, xct) if int(action.get('process_outputs_as_mac_bundle_resources', False)): for output in action['outputs']: AddResourceToTarget(output, pbxp, xct) # tgt_mac_bundle_resources holds the list of bundle resources so # the rule processing can check against it. if is_bundle: tgt_mac_bundle_resources = spec.get('mac_bundle_resources', []) else: tgt_mac_bundle_resources = [] # Add custom shell script phases driving "make" for "rules" sections. # # Xcode's built-in rule support is almost powerful enough to use directly, # but there are a few significant deficiencies that render them unusable. # There are workarounds for some of its inadequacies, but in aggregate, # the workarounds added complexity to the generator, and some workarounds # actually require input files to be crafted more carefully than I'd like. # Consequently, until Xcode rules are made more capable, "rules" input # sections will be handled in Xcode output by shell script build phases # performed prior to the compilation phase. # # The following problems with Xcode rules were found. The numbers are # Apple radar IDs. I hope that these shortcomings are addressed, I really # liked having the rules handled directly in Xcode during the period that # I was prototyping this. # # 6588600 Xcode compiles custom script rule outputs too soon, compilation # fails. This occurs when rule outputs from distinct inputs are # interdependent. The only workaround is to put rules and their # inputs in a separate target from the one that compiles the rule # outputs. This requires input file cooperation and it means that # process_outputs_as_sources is unusable. # 6584932 Need to declare that custom rule outputs should be excluded from # compilation. A possible workaround is to lie to Xcode about a # rule's output, giving it a dummy file it doesn't know how to # compile. The rule action script would need to touch the dummy. # 6584839 I need a way to declare additional inputs to a custom rule. # A possible workaround is a shell script phase prior to # compilation that touches a rule's primary input files if any # would-be additional inputs are newer than the output. Modifying # the source tree - even just modification times - feels dirty. # 6564240 Xcode "custom script" build rules always dump all environment # variables. This is a low-prioroty problem and is not a # show-stopper. rules_by_ext = {} for rule in spec_rules: rules_by_ext[rule['extension']] = rule # First, some definitions: # # A "rule source" is a file that was listed in a target's "sources" # list and will have a rule applied to it on the basis of matching the # rule's "extensions" attribute. Rule sources are direct inputs to # rules. # # Rule definitions may specify additional inputs in their "inputs" # attribute. These additional inputs are used for dependency tracking # purposes. # # A "concrete output" is a rule output with input-dependent variables # resolved. For example, given a rule with: # 'extension': 'ext', 'outputs': ['$(INPUT_FILE_BASE).cc'], # if the target's "sources" list contained "one.ext" and "two.ext", # the "concrete output" for rule input "two.ext" would be "two.cc". If # a rule specifies multiple outputs, each input file that the rule is # applied to will have the same number of concrete outputs. # # If any concrete outputs are outdated or missing relative to their # corresponding rule_source or to any specified additional input, the # rule action must be performed to generate the concrete outputs. # concrete_outputs_by_rule_source will have an item at the same index # as the rule['rule_sources'] that it corresponds to. Each item is a # list of all of the concrete outputs for the rule_source. concrete_outputs_by_rule_source = [] # concrete_outputs_all is a flat list of all concrete outputs that this # rule is able to produce, given the known set of input files # (rule_sources) that apply to it. concrete_outputs_all = [] # messages & actions are keyed by the same indices as rule['rule_sources'] # and concrete_outputs_by_rule_source. They contain the message and # action to perform after resolving input-dependent variables. The # message is optional, in which case None is stored for each rule source. messages = [] actions = [] for rule_source in rule.get('rule_sources', []): rule_source_dirname, rule_source_basename = \ posixpath.split(rule_source) (rule_source_root, rule_source_ext) = \ posixpath.splitext(rule_source_basename) # These are the same variable names that Xcode uses for its own native # rule support. Because Xcode's rule engine is not being used, they # need to be expanded as they are written to the makefile. rule_input_dict = { 'INPUT_FILE_BASE': rule_source_root, 'INPUT_FILE_SUFFIX': rule_source_ext, 'INPUT_FILE_NAME': rule_source_basename, 'INPUT_FILE_PATH': rule_source, 'INPUT_FILE_DIRNAME': rule_source_dirname, } concrete_outputs_for_this_rule_source = [] for output in rule.get('outputs', []): # Fortunately, Xcode and make both use $(VAR) format for their # variables, so the expansion is the only transformation necessary. # Any remaning $(VAR)-type variables in the string can be given # directly to make, which will pick up the correct settings from # what Xcode puts into the environment. concrete_output = ExpandXcodeVariables(output, rule_input_dict) concrete_outputs_for_this_rule_source.append(concrete_output) # Add all concrete outputs to the project. pbxp.AddOrGetFileInRootGroup(concrete_output) concrete_outputs_by_rule_source.append( \ concrete_outputs_for_this_rule_source) concrete_outputs_all.extend(concrete_outputs_for_this_rule_source) # TODO(mark): Should verify that at most one of these is specified. if int(rule.get('process_outputs_as_sources', False)): for output in concrete_outputs_for_this_rule_source: AddSourceToTarget(output, type, pbxp, xct) # If the file came from the mac_bundle_resources list or if the rule # is marked to process outputs as bundle resource, do so. was_mac_bundle_resource = rule_source in tgt_mac_bundle_resources if was_mac_bundle_resource or \ int(rule.get('process_outputs_as_mac_bundle_resources', False)): for output in concrete_outputs_for_this_rule_source: AddResourceToTarget(output, pbxp, xct) # Do we have a message to print when this rule runs? message = rule.get('message') if message: message = gyp.common.EncodePOSIXShellArgument(message) message = ExpandXcodeVariables(message, rule_input_dict) messages.append(message) # Turn the list into a string that can be passed to a shell. action_string = gyp.common.EncodePOSIXShellList(rule['action']) action = ExpandXcodeVariables(action_string, rule_input_dict) actions.append(action) if len(concrete_outputs_all) > 0: # TODO(mark): There's a possibilty for collision here. Consider # target "t" rule "A_r" and target "t_A" rule "r". makefile_name = '%s.make' % re.sub( '[^a-zA-Z0-9_]', '_' , '%s_%s' % (target_name, rule['rule_name'])) makefile_path = os.path.join(xcode_projects[build_file].path, makefile_name) # TODO(mark): try/close? Write to a temporary file and swap it only # if it's got changes? makefile = open(makefile_path, 'wb') # make will build the first target in the makefile by default. By # convention, it's called "all". List all (or at least one) # concrete output for each rule source as a prerequisite of the "all" # target. makefile.write('all: \\\n') for concrete_output_index in \ xrange(0, len(concrete_outputs_by_rule_source)): # Only list the first (index [0]) concrete output of each input # in the "all" target. Otherwise, a parallel make (-j > 1) would # attempt to process each input multiple times simultaneously. # Otherwise, "all" could just contain the entire list of # concrete_outputs_all. concrete_output = \ concrete_outputs_by_rule_source[concrete_output_index][0] if concrete_output_index == len(concrete_outputs_by_rule_source) - 1: eol = '' else: eol = ' \\' makefile.write(' %s%s\n' % (concrete_output, eol)) for (rule_source, concrete_outputs, message, action) in \ zip(rule['rule_sources'], concrete_outputs_by_rule_source, messages, actions): makefile.write('\n') # Add a rule that declares it can build each concrete output of a # rule source. Collect the names of the directories that are # required. concrete_output_dirs = [] for concrete_output_index in xrange(0, len(concrete_outputs)): concrete_output = concrete_outputs[concrete_output_index] if concrete_output_index == 0: bol = '' else: bol = ' ' makefile.write('%s%s \\\n' % (bol, concrete_output)) concrete_output_dir = posixpath.dirname(concrete_output) if (concrete_output_dir and concrete_output_dir not in concrete_output_dirs): concrete_output_dirs.append(concrete_output_dir) makefile.write(' : \\\n') # The prerequisites for this rule are the rule source itself and # the set of additional rule inputs, if any. prerequisites = [rule_source] prerequisites.extend(rule.get('inputs', [])) for prerequisite_index in xrange(0, len(prerequisites)): prerequisite = prerequisites[prerequisite_index] if prerequisite_index == len(prerequisites) - 1: eol = '' else: eol = ' \\' makefile.write(' %s%s\n' % (prerequisite, eol)) # Make sure that output directories exist before executing the rule # action. if len(concrete_output_dirs) > 0: makefile.write('\t@mkdir -p "%s"\n' % '" "'.join(concrete_output_dirs)) # The rule message and action have already had the necessary variable # substitutions performed. if message: # Mark it with note: so Xcode picks it up in build output. makefile.write('\t@echo note: %s\n' % message) makefile.write('\t%s\n' % action) makefile.close() # It might be nice to ensure that needed output directories exist # here rather than in each target in the Makefile, but that wouldn't # work if there ever was a concrete output that had an input-dependent # variable anywhere other than in the leaf position. # Don't declare any inputPaths or outputPaths. If they're present, # Xcode will provide a slight optimization by only running the script # phase if any output is missing or outdated relative to any input. # Unfortunately, it will also assume that all outputs are touched by # the script, and if the outputs serve as files in a compilation # phase, they will be unconditionally rebuilt. Since make might not # rebuild everything that could be declared here as an output, this # extra compilation activity is unnecessary. With inputPaths and # outputPaths not supplied, make will always be called, but it knows # enough to not do anything when everything is up-to-date. # To help speed things up, pass -j COUNT to make so it does some work # in parallel. Don't use ncpus because Xcode will build ncpus targets # in parallel and if each target happens to have a rules step, there # would be ncpus^2 things going. With a machine that has 2 quad-core # Xeons, a build can quickly run out of processes based on # scheduling/other tasks, and randomly failing builds are no good. script = \ """JOB_COUNT="$(/usr/sbin/sysctl -n hw.ncpu)" if [ "${JOB_COUNT}" -gt 4 ]; then JOB_COUNT=4 fi exec "${DEVELOPER_BIN_DIR}/make" -f "${PROJECT_FILE_PATH}/%s" -j "${JOB_COUNT}" exit 1 """ % makefile_name ssbp = gyp.xcodeproj_file.PBXShellScriptBuildPhase({ 'name': 'Rule "' + rule['rule_name'] + '"', 'shellScript': script, 'showEnvVarsInLog': 0, }) if support_xct: support_xct.AppendProperty('buildPhases', ssbp) else: # TODO(mark): this assumes too much knowledge of the internals of # xcodeproj_file; some of these smarts should move into xcodeproj_file # itself. xct._properties['buildPhases'].insert(prebuild_index, ssbp) prebuild_index = prebuild_index + 1 # Extra rule inputs also go into the project file. Concrete outputs were # already added when they were computed. groups = ['inputs', 'inputs_excluded'] if skip_excluded_files: groups = [x for x in groups if not x.endswith('_excluded')] for group in groups: for item in rule.get(group, []): pbxp.AddOrGetFileInRootGroup(item) # Add "sources". for source in spec.get('sources', []): (source_root, source_extension) = posixpath.splitext(source) if source_extension[1:] not in rules_by_ext: # AddSourceToTarget will add the file to a root group if it's not # already there. AddSourceToTarget(source, type, pbxp, xct) else: pbxp.AddOrGetFileInRootGroup(source) # Add "mac_bundle_resources" and "mac_framework_private_headers" if # it's a bundle of any type. if is_bundle: for resource in tgt_mac_bundle_resources: (resource_root, resource_extension) = posixpath.splitext(resource) if resource_extension[1:] not in rules_by_ext: AddResourceToTarget(resource, pbxp, xct) else: pbxp.AddOrGetFileInRootGroup(resource) for header in spec.get('mac_framework_private_headers', []): AddHeaderToTarget(header, pbxp, xct, False) # Add "mac_framework_headers". These can be valid for both frameworks # and static libraries. if is_bundle or type == 'static_library': for header in spec.get('mac_framework_headers', []): AddHeaderToTarget(header, pbxp, xct, True) # Add "copies". pbxcp_dict = {} for copy_group in spec.get('copies', []): dest = copy_group['destination'] if dest[0] not in ('/', '$'): # Relative paths are relative to $(SRCROOT). dest = '$(SRCROOT)/' + dest # Coalesce multiple "copies" sections in the same target with the same # "destination" property into the same PBXCopyFilesBuildPhase, otherwise # they'll wind up with ID collisions. pbxcp = pbxcp_dict.get(dest, None) if pbxcp is None: pbxcp = gyp.xcodeproj_file.PBXCopyFilesBuildPhase({ 'name': 'Copy to ' + copy_group['destination'] }, parent=xct) pbxcp.SetDestination(dest) # TODO(mark): The usual comment about this knowing too much about # gyp.xcodeproj_file internals applies. xct._properties['buildPhases'].insert(prebuild_index, pbxcp) pbxcp_dict[dest] = pbxcp for file in copy_group['files']: pbxcp.AddFile(file) # Excluded files can also go into the project file. if not skip_excluded_files: for key in ['sources', 'mac_bundle_resources', 'mac_framework_headers', 'mac_framework_private_headers']: excluded_key = key + '_excluded' for item in spec.get(excluded_key, []): pbxp.AddOrGetFileInRootGroup(item) # So can "inputs" and "outputs" sections of "actions" groups. groups = ['inputs', 'inputs_excluded', 'outputs', 'outputs_excluded'] if skip_excluded_files: groups = [x for x in groups if not x.endswith('_excluded')] for action in spec.get('actions', []): for group in groups: for item in action.get(group, []): # Exclude anything in BUILT_PRODUCTS_DIR. They're products, not # sources. if not item.startswith('$(BUILT_PRODUCTS_DIR)/'): pbxp.AddOrGetFileInRootGroup(item) for postbuild in spec.get('postbuilds', []): action_string_sh = gyp.common.EncodePOSIXShellList(postbuild['action']) script = 'exec ' + action_string_sh + '\nexit 1\n' # Make the postbuild step depend on the output of ld or ar from this # target. Apparently putting the script step after the link step isn't # sufficient to ensure proper ordering in all cases. With an input # declared but no outputs, the script step should run every time, as # desired. ssbp = gyp.xcodeproj_file.PBXShellScriptBuildPhase({ 'inputPaths': ['$(BUILT_PRODUCTS_DIR)/$(EXECUTABLE_PATH)'], 'name': 'Postbuild "' + postbuild['postbuild_name'] + '"', 'shellScript': script, 'showEnvVarsInLog': 0, }) xct.AppendProperty('buildPhases', ssbp) # Add dependencies before libraries, because adding a dependency may imply # adding a library. It's preferable to keep dependencies listed first # during a link phase so that they can override symbols that would # otherwise be provided by libraries, which will usually include system # libraries. On some systems, ld is finicky and even requires the # libraries to be ordered in such a way that unresolved symbols in # earlier-listed libraries may only be resolved by later-listed libraries. # The Mac linker doesn't work that way, but other platforms do, and so # their linker invocations need to be constructed in this way. There's # no compelling reason for Xcode's linker invocations to differ. if 'dependencies' in spec: for dependency in spec['dependencies']: xct.AddDependency(xcode_targets[dependency]) # The support project also gets the dependencies (in case they are # needed for the actions/rules to work). if support_xct: support_xct.AddDependency(xcode_targets[dependency]) if 'libraries' in spec: for library in spec['libraries']: xct.FrameworksPhase().AddFile(library) # Add the library's directory to LIBRARY_SEARCH_PATHS if necessary. # I wish Xcode handled this automatically. library_dir = posixpath.dirname(library) if library_dir not in xcode_standard_library_dirs and ( not xct.HasBuildSetting(_library_search_paths_var) or library_dir not in xct.GetBuildSetting(_library_search_paths_var)): xct.AppendBuildSetting(_library_search_paths_var, library_dir) for configuration_name in configuration_names: configuration = spec['configurations'][configuration_name] xcbc = xct.ConfigurationNamed(configuration_name) for include_dir in configuration.get('mac_framework_dirs', []): xcbc.AppendBuildSetting('FRAMEWORK_SEARCH_PATHS', include_dir) for include_dir in configuration.get('include_dirs', []): xcbc.AppendBuildSetting('HEADER_SEARCH_PATHS', include_dir) if 'defines' in configuration: for define in configuration['defines']: set_define = EscapeXCodeArgument(define) xcbc.AppendBuildSetting('GCC_PREPROCESSOR_DEFINITIONS', set_define) if 'xcode_settings' in configuration: for xck, xcv in configuration['xcode_settings'].iteritems(): xcbc.SetBuildSetting(xck, xcv) if 'xcode_config_file' in configuration: config_ref = pbxp.AddOrGetFileInRootGroup( configuration['xcode_config_file']) xcbc.SetBaseConfiguration(config_ref) build_files = [] for build_file, build_file_dict in data.iteritems(): if build_file.endswith('.gyp'): build_files.append(build_file) for build_file in build_files: xcode_projects[build_file].Finalize1(xcode_targets, serialize_all_tests) for build_file in build_files: xcode_projects[build_file].Finalize2(xcode_targets, xcode_target_to_target_dict) for build_file in build_files: xcode_projects[build_file].Write()